

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

High Energy X-rays Applications

Dean R. Haeffner

Advanced Photon Source Argonne National Laboratory

Presented at the National School for Neutron and X-ray Scattering June 9, 2009

High Energy X-rays?

Loose definition ⇒ Photons between 40 - 120 keV

Why?

Low Absorption Bulk measurements Special environments *Furnaces Reaction cells Cryostats High-pressure cells* Often comparable to neutrons

Simplified Scattering Kinematical diffraction Small absorption, polarization, & dispersion corrections

Small Diffraction Angles Large Q range Forward scattering

What?

Stress/strain/texture measurements Small-angle scattering High energy diffraction microscopy (HEDM) (i.e., grain tracking) Pair distribution functions (PDF) Includes high-pressure Powder diffraction High-resolution (point counting) Time-resolved (area detectors) Diffuse scattering Triple-axis diffractometry Fluorescence measurements Imaging Tomography Radiography

Combinations of the above SAXS/WAXS Imaging/WAXS

X-ray Absorption

 $I_x = I_o e^{(\mu/\rho)\rho x}$

- I_o original beam intensity
- I_x measured beam intensity
- μ/ρ mass absorption coeff.
- ρ material density
- *x* material thickness

$$\mu_{pe} \sim Z^3 / E^3$$

Note: Compton scattering becomes increasing more important as Z decreases and E increase.

Photon Mass Absorption for Fe

X-ray Absorption at High Energies

X-ray Penetration Distances in Selected Metals

Material	Mo tube 17.48 keV	Synchrotron, 80 keV	
Copper	0.10 mm	6.9 mm	
Bronze (10%Sn)	0.11 mm	5.5 mm	
Brass (25%Zn)	0.11 mm	7.1 mm	
Wrought Iron (0.01 % C)	0.16 mm	10.7 mm	
Cast Iron (3 % C)	0.17 mm	11.2 mm	

Simplified Scattering

- More kinematical scattering
 - Extinction length ~ E
 - Dynamical scattering $I \sim |F|$
 - Kinematical scattering $I \sim |F|^2$
 - In between is a problem
 - Primary/secondary extinction
- Smaller diffraction angles lead to smaller polarization effects
- For all but heavy elements, well above the K-edges
 - Cerium K-edge at 40.44 keV
 - Negligible anomalous scattering effects for most cases

Forward Scattering/High Q

Where Do We Find High-Energy X-rays

High Energy, Third Generation Synchrotrons

Brilliance of Various Sources

Brilliance of Various Sources

The Future Is Bright

APS High Energy Beamlines

High Energy X-ray Optics

High Energy X-ray Optics at 1-ID

Kramer, Margulies, McCallum, Zhao, Goldman, Lee, & Haeffner

Detectors

Mar345 on-line image plate

Bruker 6500 CCD

GE Rad detector

Example 1: Aggregate Stress/Strain/Texture

- 1. *Powder limit: N* > ~1000
 - Average strain and orientation distribution (texture).
 - Useful if gradients » grain size.
 - Well-established techniques (esp. for surface: $\sin^2\psi$ method).

2. Finite N

- Grain boundary mapping, intragranular stress, local texture: "Grain-boundary engineering"
- Test local deformation models.
- Emerging techniques...

Absolute scale 0.01 - 1000 μm Nanoscience - Engineering

Local Strain and Texture Mapping with High-Energy X-rays

SR Property	Enables	Scale	Science
High-energies	High- penetration depths	many mm.	Bulk studies/complicated environments
Low emittance & high flux	Spatial resolution	μm	Local strains&texture
High flux (& area detectors)	Temporal resolution	(sub)sec.	Phase transitions, strain relaxation

Aggregate Stress/Strain/Texture

Strain is measured with diffraction using Bragg's law

$$\varepsilon = \frac{d - d_o}{d_o} = \frac{\sin \theta_o}{\sin \theta} - 1$$

Load Partitioning in Ultrahigh Carbon Steel (UHCS)

UHCS Macro- and Micro-Data upon Loading

Macro-Data for Annealed UHCS

A Typical X-ray Diffraction Pattern for UHCS

Strain Development & Strain-Free Point

Number of Bins

UHCS Annealed Micro-Data upon Loading

UHCS Annealed Micro-Data upon Loading

M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C. Dunand, "Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel," Acta Mater. 55 (6), 1999-2011 (2007).

Biomechanics of Bone and Teeth

Example 2: High Energy Diffraction Microscopy (HEDM)

- 1. *Powder limit: N* > ~1000
 - Average strain and orientation distribution (texture).
 - Useful if gradients » grain size.
 - Well-established techniques (esp. for surface: $sin^2\psi$ method).

2. Finite N

- Grain boundary mapping, intragranular stress, local texture: "Grain-boundary engineering"
- Test local deformation models.
- Emerging techniques...

High Energy Diffraction Microscopy (HEDM)

High Energy Single Grain Diffraction

- Orientation contrast
- Small scattering angles
- Intensity ∝ volume
- 'parallel' data acquisition
- Multigrain indexing software
- Spot overlap

Linear in number of domains Quadratic in orientation spread

Near field

- Position dominates strain
- Diffracted beams
 - project grain outline

Far field

- strain dominates position
- 'sensitivity': < 0.1 mm (signal-to-noise)</p>
- Spatial information: 'box scan'

High Resolution Reciprocal Space Mapping

Aim:

Characterization of evolving dislocation structure during plastic deformation:

Cell formation? Subdivision? Stability? Strain?

Samples:

FCC metals, tensile deformation up to 4.5%

Experiment:

In-situ, bulk single grain probe

Metal Structures

Small deformation

Large deformation

Setup at 1-ID

Samples

- ■Cu (99.99% OFHC)
- Cold rolled to 80% reduction, fully recrystallized
- Thickness 300 μm, 30 μm grain size (EBSP)
- Displacement controlled tension rig
- ■[400] || load axis

Raw Diffraction Data

Detector A 40 cm from sample

Grain-scale

Subgrain-scale

Detector B

Cell & wall identification

B. Jakobsen et al., *Science* **312** (2006) 889-892

in

Axial Strain

Cu, (σ || 100)

- H. Mughrabi, T. Ungár et al., 1980's
- Macroscopic diffraction peak asymmetry
- Dislocation walls: forward stresses
- Dislocation-depleted regions: back stresses
- Each component broadened by respective dislocation density

- Subgrains:
 - < 12 dislocations in subgrain</p>
 - Homogeneous internal-strain
 - Strains between subgrains
 - Average back stress
- Dislocation boundary regions
 - Broad diffraction signal
 - Average forward stress
- B. Jakobsen et al. (2007) Acta Materialia 55: 3421

Diffraction Tracking

- Grain position, grain boundary topology
- Crystallographic phase & orientation

- Grain growth
- Phase transformation
- Initial state before processing

Near Field

- Line focus
- Reflections by ω -rotation
- Projects grain cross section onto detector
- Backtracking => grain outline
- Grain orientation
- Some minutes per layer
- Limitation: mosaic spread

H.F. Poulsen *et al.*, J. Applied Cryst., 2001 R. Suter et al.

Polycrystalline grain maps

- Sample: aluminum 1050 polycrystal
- 500C anneal for 50 minutes
- EDM cut cylinder of about 1 mm diameter
- Data acquisition time per layer ≈ 30 min

3D rendering from 6 slices

- ~24,500 triangular area elements
- Number of qualified Bragg peaks: 35 4
- Parallel algorithm implemented (B. Tieman, APS)

R.H. Moore, et al, Comp. Mat. Sci.

Example 3: Layered System

Argonr

High-energy microfocusing to study layered systems

(a) Key features

- Focus vertical size to ~1um with sufficiently small divergence (~100urad)
- WAXS/SAXS/radiography on same sample volume
- High sample & chamber penetration power
- Small bragg angles measure nearly along 2 principal sample directions
- Coatings typically isotropic inplane: unique information in single exposure
- Direct depth resolution (cf. cumulative in reflection geometry)

Solid-oxide fuel cells – Cr poisioning

SOFC testing and microstructure

Cell voltage to 0 (de-activation) after ~110hr test time

SEM Image of InDec SOFC Cross-section

SOFC diffraction data and analysis

 η =90° y, normal component R n≠0° x, in-plane 500 1500 2000 Columns

Typical pattern (multiple phases) Mar345, E=80.7 keV

Intensity

- Smooth & constant vs η (fine grained, no texture)

•Reliable Reitveld phase fractions (w_i)

Radius versus azimuth

deviatoric strain

•
$$\Delta \varepsilon = - (r_{xx} - r_{yy})/r_{mean}$$

Mean radius

• Reitveld -> lattice parameters

 $Z_{sam} - Z_{eff}$

 Z_{sam}

stoichiometry

Sample transmission & phase fractions

Integrated porosity

$$z_{eff} = \frac{-\ln(T)}{\sum_{i=1}^{N} w_i \mu_i}$$

SOFC phase, porosity, strain & lp maps

Proposed mechanism of Cr poisoning

Cr Accumulation Mechanism

Generation at metallic interconnect

 $Cr_2O_3(s) + 1.5O_2(g) + 2H_2O(g) = 2CrO_2(OH)_2(g)$

Deposition through Electrochemical Process¹

 $2CrO_2(OH)_2(g) + 6 e^- = Cr_2O_3(s) + 2H_2O(g) + 3O^{2-}$

Deposition through Chemical Process²

 $3CrO_{2}(OH)_{2}(g) + La_{1-x}Sr_{x}MnO_{3}(s) = La_{1-x}Sr_{x}CrO_{3}(s) + MnCr_{2}O_{4}(s) + 3H_{2}O(g) + 2.5O_{2}$

1. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiß, *J. Electrochem. Soc.* **143**, 3642, 1996 2. S. P. S. Badwal, R. Deller, K. Foger, Y. Ramprakash, J. P. Zhang, *Solid State Ionics*, **99**, 297, 1997

Studies of layered systems at 1-ID

Environmental barrier coatings

- Ta_2O_5 (with Al_2O_3 and La_2O_3) on Si_3N_4 (J. Almer, K. Faber, C. Weyant, K. Lee)
- Mullite/Barium-Strontium Aluminosilicate on Si/SiC (J. Almer, K. Faber, B. Harder)
- Thermal barrier coatings
 - Depth-resolved phase, strain and porosity (SAXS/WAXS) of EB-PVD TBCs
 - A. Kulkarni, H. Herman, J. Almer et al, J. Am. Cer. Soc 87, p. 268-74 (2004).
 - In-situ oxidation studies of phase and strain evolution on TBC bondcoat
 - J. Almer, E. Ustundag, G.Swift, J.Nycha and D. Clarke, Mat. Sci. Forum 490, p.287-93 (2005)
 - Localized strain measurements in plasma-sprayed TBCs
 - J. Thornton, S. Slater and J. Almer, J. Am. Cer. Soc. 88(10), p. 2817-2825 (2005).

Metal-nitride coatings

- Strain, texture and phase-decomposition analysis (SAXS/WAXS)
 - J. Almer, U. Lienert, R. Peng, C. Schlauer and M. Oden, J. App. Physics 94, p. 697-702 (2003).
 - M. Terner, P. Hedstrom, J. Almer, J. Ilavsky and M. Oden, Mat. Sci. Forum 524, p. 619-624 (2006)
- Solid-oxide fuel cells
 - Depth-resolved porosity and phase analysis (SAXS/WAXS)
 - A. Allen, T. Dobbins, F. Zhao, J. Ilavsky, J. Almer and F. DeCarlo, Cer. Eng. 25(3), p. 275-80 (2004).
 - Investigation of Cr-poisoning mechanism (J. Almer, D. J. Liu)

Conclusions/Comments

- The use of high energy x-rays present many new experimental possibilities for the study of materials.
- Stress/strain/texture can be studied in a wide variety of materials using both aggregate and single grain methods.
- Data from these experiments can help to verify/reject results from modeling.
 - We are always looking to establish better connections to theorists and modelers.
- More and more, these studies are being done under "real time" conditions to monitor materials evolution during processing, etc.
- Use of a combination of methods is a powerful methodology
 - Fuel cells as one example
- Improvements in undulators and x-ray optics will provide substantial gains x-ray flux density in the near future, providing exciting new capabilities.

Who: Acknowledgements

- 1-ID Personnel
 - Jon Almer
 - Ulrich Lienert
 - Peter Lee
 - Sarvjit Shastri
 - Ali Mashayekhi
- Students
 - Marcus Young (steel)
 - Now at Ruhr Univ. (Bochum)
 - Alix Deymier (NU, bone/teeth)
 - Anjali Singhal (NU, bone)
 - Fang Yuan (NU, bone)

- Collaborators
 - David Dunand (Northwestern)
 - Cate Brinson (Northwestern)
 - Robert Suter (Carnegie Mellon)
 - Stuart Stock (Northwestern Medical)
 - Henning Poulsen (Risø)
 - Wolfgang Pantleon (Risø)

Funding by the Department of Energy, Basic Energy Sciences

